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Abstract: We used the lumped rainfall–runoff hydrologic models Génie Rural à 4, 5, 6 paramètres
Journalier (GR4J, GR5J and GR6J) to evaluate the most robust model for simulating discharge on four
forested small catchments (<40 ha) in south-central Chile. Different evapotranspiration methods were
evaluated: Oudin, Hargreaves–Samani and Priestley–Taylor. Oudin’s model allows the achievement
of the highest efficiencies in the flow simulation. The more sensitive parameters for each model were
identified through a Generalized Probability Uncertainty Estimation (GLUE) model. Our results
demonstrate that the three hydrological models were capable of efficiently simulating flow in the
four study catchments. However, the GR6J model obtained the most satisfactory results in terms of
simulated to measured streamflow closeness. In general, the three models tended to underestimate
peak flow, as well as underestimate and overestimate flow events in most of the in situ observations,
according to the probability of non-exceedance. We also evaluated the models’ performance in a
simulation of summer discharge due to the importance of downstream water supply in the months
of greatest scarcity. Again, we found that GR6J obtained the most efficient simulations.

Keywords: hydrological models; small catchment; plantations; Pinus radiata; Nothofagus glauca;
Eucalyptus nitens

1. Introduction

There is global concern about how the decreased precipitation and increased tempera-
tures associated with climate change will affect water availability [1,2]. There is also the
potential for land use and management to amplify the effects of climate change on water
resources [3]. Since 2010, Chile has experienced its longest drought on record, and this has
been characterized by decreasing precipitation and increasing air temperatures [4,5]. This
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drought has increased water scarcity in central Chile [6], where most of the plantations and
native forest are concentrated and where most of the population lives (34◦ to 40◦ S) [7].

To estimate and characterize streamflow, which is used for drinking water and irri-
gation, among other uses, the application of models fed by hydrometeorological data has
been proposed by several authors (e.g., [8–10]). Hydrological models can give a better
understanding of the role of components in the hydrological cycle in each catchment, in
addition to serving as a basis for the modeling of other hydrological processes. Thus,
hydrological modeling at the catchment scale is justified [11]. Additionally, at small catch-
ment scales, water availability for human consumption and irrigation is a main concern of
society, especially rural communities. Therefore, it is important to know the response of the
hydrological regime to both natural and human causes at catchment scale (<100 ha) [12].

The predictive capacity of a hydrological model depends on its structure, the input
data quality and resolution in time and space, how and where it is applied and its pre-
diction quality. Modelers usually look for consistency between the understanding of the
hydrological system and the model that it represents [13]. Each catchment study has a
unique combination of climate, topography, geology and land use [11]. Therefore, hy-
drological rainfall–runoff models are tools widely used by hydrologists for streamflow
estimation [14–18]. There are many hydrological rainfall–runoff models, but the main
classifications are conceptual or physically based, and lumped or distributed models [19].
Physical models are usually more complex and require more input data, which is a problem
in data-scarce regions (e.g., [20]), so conceptual models have gained attention regarding
their simplicity, low amount of data and fewer input variables, but with good representation
of streamflow (e.g., [21]).

Some of the conceptual and lumped hydrological models that are currently used
are the GR4J—“Génie Rural à 4 paramètres Journalier”—model [22], the GR5J—“Génie
Rural à 5 paramètres Journalier”—model [23], the GR6J—“Génie Rural à 6 paramètres
Journalier”—model [24], the HYMOD (Hydrologic Model) [25] and the HBV hydrological
model [26]. A catchment is represented as one pixel with different buckets or compart-
ments [27]. Models’ inputs are precipitation, temperature and/or potential or actual
evapotranspiration. The GR model family (i.e., GR4J, GR5J and GR6J) has been recognized
as a family of simple yet robust hydrological models [28,29], and they have been used in
several studies around the globe [30–34]. In north-central Chile, for example, Barría et al.
used the GR2M model (monthly time step) to model 87 catchments [35]. Refs. [36,37]
used the GR4J model in Andean catchments and in the Elqui River in northern Chile,
respectively. Ref. [38] showed satisfactory results applying the GR6J model in an Andean
catchment in northern Chile [38]. However, within forested/afforested small catchments
with different land uses, these models have not yet been applied in Chile.

The minimum information to calibrate hydrological models is streamflow, preferably
at the catchment outlet and ideally at sub catchments, precipitation and an estimate of
potential evapotranspiration. It is important to note that model performance depends on
the quality of the input data, model structure and measurements of model outputs [39].
While streamflow, precipitation and temperature data are often available, potential evapo-
transpiration has multiple ways of calculation (i.e., [40–42]), so it poses a challenge given
the numerous approaches to its estimation [43]. In this regard, there are several types of
potential evapotranspiration methods/models available, which can be classified as: (i) fully
physically based combination models; (ii) semi physically based models; and (iii) black-box
models based on artificial neural networks (e.g., [44]), empirical relationships and fuzzy
and genetic algorithms for calibration and parameters’ optimization [45]. For example,
some approaches to potential evapotranspiration (PET) and actual evapotranspiration
(AET) estimation are derived from remote sensing products, but they need to be calibrated
with ground data (e.g., [46]), which are not always available.

The most common approach to estimate PET (the water released to the atmosphere
by soil and plants under no water stress) is empirical relationships between temperature
and other meteorological variables such as wind speed and radiation [40]. As meteoro-
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logical data are usually limited in remote areas and in small catchments, remote sensing
information has been used (e.g., [47]). However, since they do not have observed values,
PET/AET estimation is challenging [43]. Ref. [48] showed that formulae based on tem-
perature and radiation tend to provide the best streamflow simulations. PET estimates
based on the Penman approach [49] seem less suited to use in rainfall–runoff models [48].
However, a complex PET approach does not guarantee better results compared to a sim-
plistic approach [48]. Additionally, the forest potential evapotranspiration (PET) and actual
evapotranspiration (AET) vary spatially and temporally. The former depends on the at-
mospheric capability to absorb water stream, while the latter depends on the vegetation
characteristics, silvicultural practices and abiotic characteristics such as climate and water
availability [50].

Some authors recommend using PET models based on temperature [51,52], while oth-
ers consider the physical processes in evapotranspiration with an eddy covariance analysis
evaluating the transformation between AET and PET and its application in conceptual
hydrological models [53]. However, the gap on this issue is still in development because
meteorological information is still scarce, and particularly in the coastal range of Chile [54].
For instance, the Priestley–Taylor AET equation, a simplified form of the Penman–Monteith
model, has been widely used for humid regions [55]. Thus, the model proposed by [55] not
only considers meteorological variables for the estimation of actual evapotranspiration,
but also adds a factor related to vegetation in the study area, with the objective of making a
more realistic estimate of evapotranspiration. The importance of knowing AET and PET is
that changes under climate change may affect streamflow yield in the future, impacting
water security [56].

Different evapotranspiration models and hydrological models have been used for flow
simulation. Ref. [57] reviewed different methods for estimating evapotranspiration in hy-
drological models. For instance, ref. [58] used the SWAT hydrological model in conjunction
with the Penman–Monteith, Hargreaves and Priestley–Taylor evapotranspiration models
for flow simulation in northern Tunisia, where they observed that streamflow simulation
was not significantly affected by the PET estimation used. Ref. [59] used the hydrologi-
cal model SWAT-2000 along with Hargreaves and Penman–Monteith evapotranspiration
models for the simulation of flow on a small catchment in Bedfordshire, England and also
used the infiltration methods NRCS curve number (CN) and Green and Ampt for runoff
estimation, showing that different combinations of PET and runoff models are necessary to
identify their contribution to the simulation quality of hydrological models.

In Chile, ref. [60] used the Hargreaves–Samani method for PET calculation within
a land use change model simulation with SWAT in central-southern Chile. Refs. [54,61]
used the Hargreaves–Samani PET equation in a runoff ratio analysis in small catchments
in south-central Chile and several catchments across Chile, respectively. Ref. [62] used
the SWEAP hydrological model with Hargreaves–Samani PET for planning an expansion
of irrigated areas in the north-eastern area of the Araucanía region. Although there is
increasing research about PET/AET estimation in Chile, very few studies have been applied
in small catchments (e.g., [61]), and as far as we know, none compared different PET/AET
methods in hydrological modeling.

Many factors must be considered when determining which precipitation–runoff hy-
drological model to use within the study catchment. In large and highly heterogeneous
catchments, a more complex hydrological model that considers a high number of input
variables and parameters results in higher quality simulation [63,64]. In the case of small
catchments, spatial variability is lower, requiring less complex models to provide satisfac-
tory results [65]. Moreover, authors such as [66] have not observed significant differences
in the quality of simulation of models of different complexities for similar scenarios. In
addition, the hydrological parameters that define each model do not necessarily have the
same weight in the output. There are parameters that highly influence the behavior of the
model, while others influence the behavior minimally [67]. This implies the need for a
sensitivity analysis to identify the relative dominance of each parameter in the hydrological
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model that is used. In addition, the different evapotranspiration models, having different
considerations, yield different evapotranspiration values. This generates distinct input
values for each hydrological precipitation runoff model, so that finally, flow simulations
rely on the forcing evapotranspiration model.

Our working hypotheses are: (1) increasing model complexity will allow for greater
efficiency in simulating discharge in small catchments; and (2) a tentative suggestion is
made regarding a possible role for potential evapotranspiration in the forest environment.
Therefore, the objective of this study was to investigate the GR lumped daily hydrological
models’ family performance in four forested catchments across different PET approaches
(PET and AET) and how the PET/AET approaches impact the modeling of small catchments
and model complexity. We achieved this by analyzing (a) annual streamflow, (b) summer
flows and (c) peak flows on these four catchments in south-central Chile.

This paper is organized as follows: (i) introduction to flow simulation using different
hydrological and evapotranspiration models; (ii) methodology that describes the study
area, hydrological, PET and AET models, efficiency statistics, calibration and validation
periods and sensitivity analysis; (iii) results showing the evapotranspiration methods and
parameter sets that maximize the efficiency of hydrological models, the quality of the
simulation, annual hydrograph analysis and minimum flows and the sensitivity of the
parameters through the GLUE method; (iv) summary of the main results and possible
extensions of this work; (v) conclusions; and (vi) appendix with graphical representation
of the sensitivity of the parameters in the hydrological models GR4J, GR5J and GR6J.

2. Materials and Methods
2.1. Study Area

The study area comprised four coastal catchments in south-central Chile: Quivolgo 2
(Q2), Quivolgo 3 (Q3), Bajo las Quemas 1 (BLQ1) and Bajo las Quemas 2 (BLQ2). The
Quivolgo catchments are located near the city of Constitución (35.20◦ S), while those of
Bajo las Quemas are located near the town of Curanilahue (37.28◦ S) (Figure 1).

Regarding the climatological characteristics of the catchment, dry months are from
November to March, and rainy months are from May to August. All the catchments have a
similar intra-annual distribution of precipitation and temperature (Figure 2a,b). Annual
precipitation in Q2 and Q3 varied between 727 and 1342 mm over the last 10 years, with a
mean annual value of 941.08 mm and a mean daily value of 2.56 mm [68]. In BLQ1 and
BLQ2, annual precipitation ranged from 1324 mm to 2146 mm between 2010 and 2016, with
a mean annual value of 1698 mm and a mean daily value of 4.65 mm. Average monthly
flow reaches its maximum values in the months of July, August and September in the
four catchments. BLQ1 exhibited the highest flow values, followed by BLQ2, Q2 and Q3.
Minimum average monthly flows are reached in the summer months (January to March)
for the four study catchments, specifically in the months of February and March (Figure 2c).
Surface, land cover and elevation characteristics are presented in Table 1.

Q2 is covered by Nothofagus glauca (Hualo) as the dominant species, a native and
winter deciduous species [68]. Q3 is a mixed catchment covered by Pinus radiata planted in
2001 (62%) and native forest with N. glauca as the main species (34%). BLQ1 and BLQ2 are
covered by Eucalyptus nitens plantations with an initial stock density of 1666 trees ha−1; no
forest management was performed in these catchments [3].

In Q2 and Q3, soils have originated from metamorphic rocks [3,68] with a topography
of hills and ridges, with variable and complex slopes. The soil is shallow, with depths
between 0 and 100 cm and organic matter between 3 and 4% on the surface [69], and is
composed of silt, clay and sand in the order of 36, 40 and 24%, respectively [68]. The soil has
rock fragments, and the subsoil rock is dominated by deep seams of partially weathered
material [68]. Soils of BLQ1 and BLQ2 have their origin in the group of metamorphic
soils that have been formed from material generating shales, sandstones, phyllites and
schists [69]. Usually, these soils have clay textures, low water infiltration and occupy
positions that vary from abrupt hills and mountain ranges with variable and complex
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slopes. They present a physiography of mountains dissected by deep ravines, mountainous
topography, good external drainage, moderate internal drainage and parent material
composed of shales [69].
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Table 1. Vegetation cover and geomorphological data of surface (ha), exposure (◦) and slope (◦) in
the catchments.

Catchment
Area

Land Cover
Aspect Slope

(ha) (Grade) (%)

Q2 33.02 Native forest 135.61 27.33

Q3 40.14 Native forest and P. radiata
plantation (Mixed) 179.38 24.13

BLQ1 22.63 E. nitens plantation 309.88 14.71
BLQ2 22.21 E. nitens plantation 285.11 14.15

2.2. Hydrometeorological Data

To obtain meteorological data in Q2 and Q3, a tipping-bucket automatic rain gauge
(Environdata Weather Stations Pty Ltd., Australia) was installed 35 m north of Q2 headwa-
ter and 2.3 km north of Q3 to obtain hourly temperature and precipitation data (Figure 1).
Rainfall measurements commenced in August 2016. For the period between 2010 and Au-
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gust 2016 (when streamflow data are available), daily rainfall was sourced from the nearby
meteorological site (Forel station, ‘Dirección General de Aguas’, DGA), which is about
5 km south-east of the catchment (for more information, see [68]). For BLQ1 and BLQ2, a
daily rain gauge station was used, installed 11 km to the northwest of the catchments.

For discharge estimation, a 90◦ V-notch weir was built at all catchment outlets. Water
height at the weir was measured with a pressure transducer (KPSI (Q2 and Q3), OTT (Q2
Aug-2014, BLQ1 and BLQ2)) and discharge was estimated every 5 min from the theoretic
rating curve for each weir [3]. Discharge records were available from 2009 in Q2 and from
2013 in Q3, BLQ1 and BLQ2.

Finally, net radiation was calculated from climatological data such as minimum and
maximum temperature and geomorphological data such as exposure and slope available
around nearby weather stations [70].

2.3. Hydrological Models

The GR4J, GR5J and GR6J rainfall–runoff hydrologic models were used to simulate
annual and peak flows and summer discharge in four small catchments in south-central
Chile. These models were selected as they have been used in several catchments with a
reasonable performance (e.g., [71,72]).

They have been described as metric-conceptual, deterministic and grouped models
for daily runoff data using four, five and six parameters, respectively. These models belong
to the family of soil moisture models, in which the number of parameters is determined
by their functionality and parameterization [22]. The models’ input data are daily rainfall
(P in mm), daily PET (in mm) and observed streamflow for calibration/validation. Later,
with P and PET as input, net rainfall and net evapotranspiration (Pn and Es, respectively,
in Figure 3) are calculated. When P is greater than PET, Ps and Pr can be calculated, and
available water is routed to storage. These calculations applied to all GRxJ models. More
details of the models’ configuration can be found in [22].
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The GR4J model employs four parameters—X1: maximum storage capacity (mm);
X2: groundwater exchange coefficient (mm); X3: maximum channel transit capacity (mm);
and X4: base time of unit hydrograph (days) [22] (Figure 3).

The GR5J model is a modification of the GR4J model [23]. This modification incorpo-
rated an additional parameter intended to consider groundwater exchange between more
complex catchments, which can take positive or negative values (dimensionless). The latter
parameter, X5, is an exchange threshold between precipitation capture (dimensionless) [74].

The GR6J model considers an additional parameter that gives a more detailed analysis
in the model structure, resulting in a higher quality simulation of low discharge. Thus, the
X6 parameter corresponds to the exponential storage vacuum coefficient and can only take
values greater than or equal to 0 [24,74]. A better understanding of the methodological
steps followed for this research work is shown in Figure 4.
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The airGR package for R software version 3.6.0 [74,75] was used to run these models.

2.4. Evapotranspiration Models

Although input data for the hydrological models are precipitation and potential
evapotranspiration, we decided to also use alternative models of AET to verify whether
their use is adequate for the hydrological models under study and for forested catchments
as the chosen AET model differentiates between land covers. From this comparison, it was
possible to determine which model gives a more efficient simulation in each catchment.
The models used were the Oudin model [48], Hargreaves–Samani model [76] and Priestley–
Taylor model [55].

The Oudin (EO) model [48] (Equations (1) and (2)) is defined as a physically based daily
potential model in which potential evapotranspiration depends exclusively on temperature
and extraterrestrial solar radiation.

t + 5 > 0 => EO =
Re

λρ

t + 5
100

(1)

t + 5 ≤ 0 => EO = 0 (2)

where EO = Oudin’s model estimate for potential evapotranspiration (mm day−1); Re =
extraterrestrial radiation (Mj m2 day−1); t = temperature (◦C); λ = latent heat flux (Mj kg−1);
ρ = water density (kg m−3).

The Hargreaves–Samani (EH) model (Equation (3)) is a daily potential evapotranspi-
ration model, also physics-based, which, unlike the one proposed by Oudin, depends on
temperature and incident solar radiation [76].

EH = 0.0135 ∗ (t + 17.78) ∗ RS (3)
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where EH = Hargreaves’ model estimate for potential evapotranspiration (mm day−1);
RS = incident radiation (mm day−1); t = temperature (◦C).

The Priestley–Taylor model (EPTp) [55] (Equation (4)) defines potential evaporation
as the evaporation that would occur from a hypothetical saturated surface, with similar
radiative properties throughout the study area. This area is small enough so that excess
moisture flux does not change the characteristics of the convective boundary layer.

EPTp =
∆

∆ + Y
(Rn −G) (4)

where EPTp = equilibrium rate of evapotranspiration (mm day−1), which assumes no aero-
dynamic transfer; ∆ = slope of the saturated steam heat curve (Pa ◦C−1); Υ = psychometric
constant (Pa ◦C−1); λ = latent heat flux (Mj kg−1).

The equilibrium rate of actual evaporation is modified to give Priestley–Taylor PET
as AET = α ∗ EPTp [77]. The parameter “α” is related to the vegetation land cover and
corresponds to the relationship between the rate of evapotranspiration and the rate of
limiting evapotranspiration observed in the study area [55].

Thus, a model is obtained of actual evapotranspiration (EPTa) (Equation (5)). The
parameter “α” has been studied by several authors and calculated for different types of
ecosystems (e.g., [77,78]). In our case, it was estimated from the values proposed by [79–81]
for coniferous and broad-leaved temperate forests (0.77 for native forest in Q2, 0.73 for
coniferous and native forest in Q3 and 0.83 for broad-leaved eucalyptus in BLQ1 and BLQ2).
For more details of EO, EH, EPTp and EPTa, see [48,76,79–81].

EPTa = α
∆

∆ + Y
(Rn −G) (5)

where EPTa = Priestley–Taylor’s model estimate for actual evapotranspiration (mm day−1);
∆ = slope of the saturated steam heat curve (Pa ◦C−1); Υ = psychometric constant (Pa ◦C−1);
λ = latent heat flux (Mj kg−1); α = coefficient related to vegetation land cover.

2.5. Model Calibration and Validation

The discharge rate record was divided into two subsamples, one of which is used in
the calibration process and the other in the validation [82].

In summer of 2017, a wildfire burned the Q2 and Q3 catchments [68]. As a consequence,
the validation period was defined as 1 January 2015 to 31 December 2016 to have the same
validation period in all catchments and to isolate the hydrologic effects of the wildfire
in the Q2/Q3 catchments. The calibration period is determined by data availability;
in Q2 it started from 1 March 2010 to 31 December 2014 and in Q3 from 15 May 2013
to 31 December 2014. In BLQ1 and BLQ2, this period was from 15 November 2013 to
31 December 2014.

The airGR package uses the “Mitchell” calibration algorithm [75] to reach a single set
of parameters for each model. This algorithm starts from a global approach in which it
considers several initial values for each of the parameters and identifies the initial set that
optimizes the simulation quality of the models. Additionally, the methodology proposed
by [73] was used for the GR4J model, which uses the previously identified set of parameters
as a starting point for its optimization and seeks to maximize the Kling–Gupta statistics
(KGE and KGE’) and the Nash–Sutcliffe criterion (NSE).

For the GR5J and GR6J models, a local optimization available in the airGR package
was used to complement the Mitchell calibration, which considers the set of parameters
previously identified as a starting point for the optimization and seeks to minimize the
root mean square error (RMSE).
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2.6. Model Efficiency

Discharge simulation performed by each of the models corresponded to a daily
time step, so the variation in the observed and simulated daily discharges was evalu-
ated throughout the calibration and validation periods, as well as the summer discharges
(December–March). The tools used for the comparison of discharge were mainly hydro-
graphs and exceedance probability curves [83].

Additionally, model efficiency in the calibration and validation periods was evalu-
ated using the Kling–Gupta efficiency criteria (KGE and KGE’) [84], the root mean square
error (RMSE) [71], the Nash–Sutcliffe efficiency criterion (NSE) [85], the index of agree-
ment (IOA) [86], the mean absolute error (MAE) [86], the mean absolute percentage error
(MAPE) [87], the scatter index (SI) [88] and BIAS [86,89].

For summer flows, the logarithmic version of the NSE criterion was used (NSElog), i.e.,
it is calculated from the logarithmic values of the simulated and observed data (e.g., [90])
and has the advantage of reducing the influence of maximum flows, while maintaining
that of minimum flows [91] (Table 2). It is important to note that the alpha parameter of
the KGE and KGE’ statistics does not correspond to the same alpha parameter used for the
calculation of AET (EPTa).

Table 2. Model efficiency statistics.

N◦ Equation Values Reference

1
KGE =

1−
√
(1− α)2 + (1− β)2 + (1− ρ)2

α = σobs
σsim

; β =
µobs
µsim

σobs = ST observed stream f low
σsim = ST simulated stream f low
µobs = Mean observed stream f los

µsim = Mean simulated stream f low
ρ = Pearson correlation

[84]

2

KGE =

1−
√
(1− α)2 + (1− β)2 + (1− ρ)2

α = CVobs
CVsim

; β =
µobs
µsim

CVobs = Coe f f icient o f variation observed stream f low
CVsim = Coe f f icient o f variation simulated stream f low

µobs = Mean observed stream f low
µsim = Mean simulated stream f low

ρ = Pearson correlation

[84]

3 RMSE =

√
∑n

i=1(Q̂i−Qi)
2

n

Qi = Observed stream f low
Q̂i = Simulated stream f low

n = Data number
[71]

4 NSE = 1−
[

∑n
i=1(Q̂i−Qi)

2

∑n
i=1(Q−Qi)

2

] Qi = Observed stream f low
Q̂i = Simulated stream f low

Q = Mean observed stream f low
[85]

5 IOA = 1− ∑n
i=1(Q̂i−Qi)

2

∑n
i=1(|Q−Qi|+|Q−Q̂i|)2

Qi = Observed stream f low
Q̂i = Simulated stream f low

Q = Mean observed stream f low
n = Data number

[86,87]

6 MAE =
∑n

i=1|Q̂i−Qi|
n

Qi = Observed stream f low
Q̂i = Simulated stream f low

n = Data number
[86]

7 MAPE =
100∗∑n

i=1

∣∣∣ Q̂i−Qi
Qi

∣∣∣
n

Qi = Observed stream f low
Q̂i = Simulated stream f low

n = Data number
[87]

8
SI =

√
∑n

i=1((Q̂i−Qi)−(Qi−Q))2

n
∑n

i=1 Qi
n

Qi = Observed stream f low
Q̂i = Simulated stream f low

Q = Mean observed stream f low
Qi = Mean simulated stream f low

n = Data number

[88]

9 BIAS =
∑n

i=1(Q̂i−Qi)
n

Qi = Observed stream f low
Q̂i = Simulated stream f low

n = Data number
[86,89]
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Table 2. Cont.

N◦ Equation Values Reference

8 NSElog = 1−
[

∑n
i=1(log(Q̂i)−log(Qi))

2

∑n
i=1(log(Q)−log(Qi))2

] log(Qi) = Logaritmic observed stream f low
log(Q̂i) = Logarithmic simulated stream f low

log(Q) = Mean o f logarithmic observed stream f low
[90,91]

2.7. Sensitivity Analysis

To determine which of the parameters had a greater effect on the quality of the
discharge simulation for the GR4J, GR5J and GR6J hydrologic models, the Generalized
Probability Uncertainty Estimation (GLUE) sensitivity analysis proposed by [92] was used.
This methodology considers as a performance measure the probability that a given set
of model parameters will generate satisfactory results regarding the simulation of the
behavior of the system under study [92].

A sample size equal to 10,000 random parameter sets was used and the efficiency of
each set was determined using the RMSE statistic, which reaches its optimal values as it
approaches 0 [85]. Finally, GLUE sensitivity analysis was performed with the Sensitivity
Analysis For Everybody (SAFE) toolbox [93,94] in MATLAB software version R2019a [95].

3. Results
3.1. Best Evapotranspiration Model That Maximizes Model Performance

In each of the catchments, we investigated the performance of the GR4J, GR5J and
GR6J models using different potential/actual evapotranspiration models. Firstly, we
identified the set of parameters that allowed the most efficient simulation in the calibration
period according the Mitchell calibration algorithm [75] (Table 3), those that were obtained
from the precipitation and streamflow data, in addition to the evapotranspiration that
maximizes the efficiency of the model (Table 4).

Table 3. Parameter sets that maximize flow simulation efficiency in each basin for GR4J, GR5J and
GR6J hydrologic models in calibration period.

Catchment

Model Parameter Q2 Q3 BLQ1 BLQ2

GR4J

X1 109.94 8690.62 979.30 1577.47
X2 −146.91 −1.62 7.19 2.62
X3 7500.22 25.79 62.98 197.93
X4 0.98 1.10 1.41 1.42

GR5J

X1 122.81 10114.94 671.08 1314.74
X2 −9.21 −1.20 −1.90 0.78
X3 7598.89 24.74 235.18 212.79
X4 0.98 0.78 1.15 1.16
X5 0.13 0.35 1.00 0.00

GR6J

X1 139.10 104.57 323.76 509.16
X2 −1.18 −2.66 0.52 0.17
X3 6276.71 2554.09 112.17 123.36
X4 0.98 1.04 1.48 1.48
X5 −0.11 −0.03 −0.41 −0.73
X6 64.39 1.52 96.54 92.45

In general, catchment Q2 had lower X1-X2-X4 parameter values and higher X3 param-
eter values. The X5 parameter was in general lower in catchment Q2 and the X6 parameter
was higher in wetter catchments (BLQ1 and 2).

A graphical evaluation of model performance during the calibration and validation
periods showed that the three models captured the oscillations inherent to the observed
streamflow, so that the simulated values were well harmonized with the observed values
(Figure 5).
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Table 4. Best evapotranspiration models (PET) that maximize hydrological model performance for
the calibration period.

Catchment

Q2 Q3 BLQ1 BLQ2

GR4J

PET EO EO EH EO
KGE 0.569 0.725 0.766 0.81
KGE’ 0.456 0.704 0.813 0.815
NSE 0.495 0.569 0.72 0.673

RMSE (mm) 0.525 0.342 2.347 2.016
IOA 0.84 0.861 0.912 0.904

MAE (mm) 0.261 0.235 1.182 1.181
MAPE (%) 34.6 225.1 28.3 43.5

SI 0.67 0.84 0.49 0.55
BIAS (mm) 0.073 −0.013 0.39 −0.054

GR5J

PET EH EO EO EO
KGE 0.561 0.748 0.753 0.8
KGE’ 0.448 0.721 0.734 0.772
NSE 0.471 0.553 0.712 0.68

RMSE (mm) 0.537 0.348 2.38 1.995
IOA 0.84 0.857 0.905 0.905

MAE (mm) 0.243 0.234 1.387 1.151
MAPE (%) 32.5 220.3 37.3 41.8

SI 0.61 0.89 0.37 0.44
BIAS (mm) 0.019 −0.028 −0.087 −0.069

GR6J

PET EPTp EO EO EO
KGE 0.574 0.818 0.801 0.808
KGE’ 0.471 0.804 0.798 0.781
NSE 0.395 0.724 0.733 0.683

RMSE (mm) 0.575 0.273 2.292 1.985
IOA 0.862 0.824 0.917 0.907

MAE (mm) 0.229 0.188 1.273 1.093
MAPE (%) 28.4 192.7 30.4 38

SI 0.57 0.77 0.37 0.46
BIAS (mm) −0.029 −0.0014 −0.0057 0.06

Note: EH is the Hargreaves–Samani model; EO is the Oudin model; EPTp is the potential evapotranspiration
according to Priestley–Taylor; EPTa is the actual evapotranspiration according to Priestley–Taylor.

Potential and actual evapotranspiration models (PET and AET, respectively) tend
to have the same trend over time, varying only seasonally in the first summer and
autumn–winter months. The highest evapotranspiration values correspond to the EPTp
(Priestley–Taylor), EPTa (Actual Priestley–Taylor) and EH (Hargreaves–Samani) methods,
which in summer months are on average four and three times higher than Oudin evap-
otranspiration methods, respectively. On the contrary, the minimum values in summer
months are reached by the Eo (Oudin) method. During the winter months, all models
achieved similar evapotranspiration values (Figure 6).

The evapotranspiration models that maximized the efficiency of the hydrological
models (Table 4) varied according to each model and catchment, with the Oudin evapotran-
spiration method being the one that maximizes efficiency in most models and catchments.
The GR4J model achieved its highest efficiency in catchments Q2, Q3 and BLQ2 using the
EO model, and in BLQ1 with the EH method. In the GR5J model, the highest efficiency
was obtained in catchments Q3, BLQ1 and BLQ2 with the EO method, and in Q2 with EH.
Finally, the GR6J model reached its highest efficiency in catchments Q3, BLQ1 and BLQ2
when the EO method was used, and in Q2 when EPTp was used.
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Figure 6. Daily potential/actual evapotranspiration for: Q2 (A), Q3 (B), BLQ1 (C) and BLQ2 (D) using Oudin model (EO),
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calibration and validation period. Vertical lines represent the end of calibration period (right) and beginning of validation
period (left).

Our results demonstrated that the three hydrological models were capable of efficiently
simulating flow in the four study catchments and in general using the Oudin potential
evapotranspiration model (Table 4 for calibration period and Table 5 for validation) (KGE
and KGE’ > 0.45; NSE > 0.3, RMSE < 3.0, IOA > 0.8, MAE < 1.5, MAPE < 45%, SI > 0.37
and −0.10 < BIAS < 0.41). However, the GR6J model obtained the most satisfactory results
(Tables 4 and 5).

Table 5. Efficiency criteria for the validation period in all basins using the GR4J, GR5J and GR6J
hydrological models.

Catchment

Q2 Q3 BLQ1 BLQ2

GR4J

KGE 0.569 0.725 0.766 0.810
KGE’ 0.456 0.704 0.813 0.815
NSE 0.495 0.569 0.720 0.673

RMSE (mm) 0.525 0.342 2.347 2.016
IOA 0.840 0.861 0.912 0.904

MAE (mm) 0.261 0.235 1.182 1.181
MAPE (%) 34.6 225.1 28.3 43.5

SI 0.59 0.74 0.54 0.65
BIAS (mm) 0.058 −0.0051 0.058 −0.098

GR5J

KGE 0.561 0.748 0.753 0.800
KGE’ 0.448 0.721 0.734 0.772
NSE 0.471 0.553 0.712 0.680

RMSE (mm) 0.537 0.348 2.380 1.995
IOA 0.840 0.857 0.905 0.905

MAE (mm) 0.243 0.234 1.387 1.151
MAPE (%) 32.5 220.3 37.3 41.8

SI 0.63 0.74 0.58 0.64
BIAS (mm) 0.026 0.0088 0.18 0.41

GR6J

KGE 0.574 0.818 0.801 0.808
KGE’ 0.471 0.804 0.798 0.781
NSE 0.395 0.724 0.733 0.683

RMSE (mm) 0.575 0.273 2.292 1.985
IOA 0.862 0.824 0.917 0.907

MAE (mm) 0.229 0.188 1.273 1.093
MAPE (%) 28.4 192.7 30.4 38.0

SI 0.54 0.60 0.56 0.64
BIAS (mm) 0.0061 −0.10 0.12 0.41
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3.2. Peak Flows and Summer Flow

None of the models successfully represent peak flows (Figure 5). For example, in
the calibration period of the Q2 catchment (native forest cover), the models showed an
underestimation ranging between 20 and 70% for GR4J, 18 and 70% for GR5J and between
10 and 62% for GR6J, while in the validation period the models showed an underestimation
ranging between 21 and 62% for GR4J and GR5J and between 15 and 58% for GR6J. In the
calibration period of Q3, the models showed an underestimation ranging between 40 and
71% for GR4J, 39 and 72% for GR5J and 43 and 69% for GR6J, while in the validation period
the models showed an underestimation ranging between 2 and 35% for GR4J, 6 and 37%
for GR5J and between 32 and 35% for GR6J.

Dry season discharge simulation, or summer flow, was not satisfactory in all catch-
ments for all three hydrologic models in the calibration period. NSElog showed low values
(<0.5) for all catchments and all models (Figure 7). IOA, MAE, MAPE, SI and BIAS were not
used because NSElog estimates better low flows as it decreases the influence of maximum
flow rates [91]. However, it was observed that models had low capacity to simulate low
flows in detail, but they followed the temporal dynamics of summer flows. The GR6J
model had the best performance to simulate low flows; in the same way, all the catchments
reached peak values in the validation period rather than in the calibration period.
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Figure 7. Streamflow simulation efficiency for models GR4J, GR5J and GR6J for summer flows
in catchments Q2, Q3, BLQ1 and BLQ2 using NSElog criteria for calibration (C) and validation
period (V).

Additionally, during calibration, the exceedance probability curves showed that GR6J
underestimated low flows in Q2, while GR4J and GR5J overestimated low flows lower than
0.8 mm; in Q3 and BLQ2, the three models underestimated low flows; and finally, in BLQ1,
GR6J underestimated low flows, while GR4J and GR5J underestimated low flows higher
than 2.51 mm and 1.99 mm, respectively. In the validation period, the GR4J and GR5J
models overestimated low flows in Q2, while the GR6J model overestimated low flows
lower than 0.79 mm; in Q3, the GR4J, GR5J and GR6J models overestimated low flows
lower than 0.39 mm, 0.35 mm and 0.34 mm; and in BLQ1, the three models underestimated
low flows higher than 1.99 mm for GR4J, 2.2 mm for GR5J and 1.90 mm for GR6J. Finally,
GR4J underestimated low flows in BLQ2, while GR5J and GR6J underestimated low flows
higher than 0.7 mm and 1.2 mm, respectively (Figures 8 and 9).



Water 2021, 13, 3191 16 of 28Water 2021, 13, x FOR PEER REVIEW 17 of 30 
 

 

 
Figure 8. Low-flow exceedance probability curves for observed and simulated values by the GR4J, GR5J and GR6J hydro-
logical models in the calibration period for: Q2 (A), Q3 (B), BlQ1 (C) and BLQ2 (D), in south-central Chile. 

Figure 8. Low-flow exceedance probability curves for observed and simulated values by the GR4J, GR5J and GR6J
hydrological models in the calibration period for: Q2 (A), Q3 (B), BlQ1 (C) and BLQ2 (D), in south-central Chile.

Water 2021, 13, x FOR PEER REVIEW 18 of 30 
 

 

 
Figure 9. Low-flow exceedance probability curves for observed and simulated values by the GR4J, GR5J and GR6J hydro-
logical models in the validation period for: Q2 (A), Q3 (B), BLQ1 (C) and BLQ2 (D), in south-central Chile. 

3.3. Sensitivity Analysis 
Possible values of the parameters lay in intervals previously identified from the pa-

rameters identified in the calibration period for each of the catchments (Table 6). 

Table 6. Low and upper limit of the parameters of the GR4J, GR5J and GR6J hydrological models 
for the sensitivity analysis. 

  GR4J GR5J GR6J 

X1 
Lower limit 0 0 0 
Upper limit 10,000 10,000 10,000 

X2 
Lower limit −100 −100 −100 
Upper limit 100 100 100 

X3 
Lower limit 0 0 0 
Upper limit 4000 4000 4000 

X4 
Lower limit 0.5 0.5 0.5 
Upper limit 3 3 3 

X5 
Lower limit - −100 −100 
Upper limit - 100 100 

X6 
Lower limit - - 0 
Upper limit - - 500 

Figure 9. Low-flow exceedance probability curves for observed and simulated values by the GR4J, GR5J and GR6J
hydrological models in the validation period for: Q2 (A), Q3 (B), BLQ1 (C) and BLQ2 (D), in south-central Chile.
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3.3. Sensitivity Analysis

Possible values of the parameters lay in intervals previously identified from the
parameters identified in the calibration period for each of the catchments (Table 6).

Table 6. Low and upper limit of the parameters of the GR4J, GR5J and GR6J hydrological models for
the sensitivity analysis.

GR4J GR5J GR6J

X1
Lower limit 0 0 0
Upper limit 10,000 10,000 10,000

X2
Lower limit −100 −100 −100
Upper limit 100 100 100

X3
Lower limit 0 0 0
Upper limit 4000 4000 4000

X4
Lower limit 0.5 0.5 0.5
Upper limit 3 3 3

X5
Lower limit - −100 −100
Upper limit - 100 100

X6
Lower limit - - 0
Upper limit - - 500

The sensitivity analysis did not show variations between each of the catchments, so
catchment Q2 was used to visually represent the results of this analysis. In the GR4J model,
parameters X1 and X4 showed low sensitivity because a given value of the parameters
could be associated with high or low efficiency values. On the contrary, parameters X2 and
X3 showed high sensitivity since the distribution of the parameter values, and the efficiency
statistic RMSE, reflected a clear efficiency trend in both. This means that negative values
close to 0 in X2, and values higher than 2000 in X3, allowed higher efficiency in the flow
simulation (Figure A1 in Appendix A).

In the GR5J and GR6J models, the parameters X1, X3 and X4 showed low sensitivity.
In the GR6J model, the parameter X6 also showed low sensitivity, since a given value
of the parameters can be associated with high or low efficiency values. On the contrary,
parameters X2 and X5 were very sensitive and values close to 0 reached the lowest RMSE
values, i.e., higher efficiency. As the parameters moved away from 0, efficiency decreased
and RMSE increased (Figures A2 and A3 in Appendix A).

4. Discussion

Our study results showed that the greater complexity of a conceptual hydrological
model improves streamflow simulation in small catchments for the hydroclimatic setting
(Mediterranean). The results also showed that a complex hydrological model such as
GR6J achieved better results in the dry native forest land cover using the Priestley–Taylor
potential evapotranspiration model and with Oudin (EO) in the dry mixed land cover
(Q3) and in both wet southern catchments (BLQ1 and BLQ2) with E. nitens land cover.
Consistently, Oudin’s potential evapotranspiration model yielded better results in all
models and in all catchments. Therefore, our study validated the hypothesis (i) that
increasing model complexity will allow for greater efficiency in simulating streamflow in
small catchments, and a simpler PET approach also achieved better results, as also showed
by Kannan et al. [59] in a small catchment in England and Oudin et al. [48,90].

We accepted the null hypothesis (i) because the GR6J model achieved the most efficient
statistics in most of the simulations compared to GR4J and GR5J, which is a similar finding
to [96] in Slovenia.

Our hypothesis (ii) that actual evapotranspiration (AET) models can provide better
results than potential models (PET) was rejected. PET models achieved more satisfactory
results than the actual Priestley–Taylor evapotranspiration model, with PET always being
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the input data that maximize the efficiency of the models. A plausible explanation for the
better performance using PET values is that soil water content limits AET, as EO yields less
ET rates.

4.1. Annual Streamflow

It is important to remember that input data for the hydrological models are PET and
not AET. However, this last approach was used to verify the difference in results compared
to PET models [22–24]. The application of specific evapotranspiration models improved
the simulation’s precision in all models.

Our results showed that EO reaches the lowest value in the evapotranspiration models.
However, as pointed out by [97], the Hargreaves–Samani model underestimates the values
observed in meteorological stations, while Priestley–Taylor reaches evapotranspiration
values that are closer to the observed values.

We observed that Q2 with Q3 and BLQ1 with BLQ2 catchments had similar PET
values according to the EO and EH model. We also observed that the Priestley–Taylor
evapotranspiration model in its potential form (EPTp) yielded similar results in both BLQ1
and 2 paired catchments, with differences around 1.8%. Unlike what is reported by [51]
for the GR4J model across the USA, in our study catchments, this model was affected by
differences in PET inputs on drier catchments (Q2 and Q3), even though there were water
limitations due to lower rainfall and probably less soil water availability.

Consistent to what is reported by [52] in tropical catchments [48,98], all evapotranspi-
ration models predicted streamflow with similar efficiency at all the catchments using the
GR4J, GR5J and GR6J models, demonstrating the low sensitivity of the study catchments to
changes in PET input values. When using AET, similar efficiencies were achieved to those
values obtained when using the different PET models. However, Oudin’s model allowed
the highest efficiencies at Q3 and BLQ2 for the three models, in Q2 using the GR4J model
and in BLQ1 using the GR5J and GR6J models. These results coincide with those obtained
by [48] and confirm that Oudin is the most efficient evapotranspiration method for the
hydrological models in our set of catchments and climate.

When GRJ models are combined with evapotranspiration models that overestimate the
actual evapotranspiration, a decrease in streamflow simulation quality occurs, especially
in low flows and streamflow in dry seasons and dry catchments, while in winter months it
is rainfall that mainly induces the streamflow simulation [58]. Thus, if evapotranspiration
becomes greater than precipitation (the former artificially overestimated by the model),
this would imply that the model does not consider the precipitation input, reducing the
lower compartments’ storage. Therefore, it is important to identify the evapotranspiration
method that maximizes flow simulation efficiency [22].

Regarding overall model results, our results agreed with studies [99,100], which found
that conceptual hydrological models perform better in wetter catchments than drier ones.
According to the NSE, IOA, MAE, MAPE and BIAS criteria, the GR6J model was the most
efficient in flow simulation, regardless of the temporal extent of the input data. Likewise, a
positive correlation was observed between models’ quality and the incoming precipitation
(i.e., wet catchments) since simulation efficiency increased for all models in years with
higher precipitation records. The NSE, IOA, MAE, MAPE, SI and BIAS criteria were the
most sensitive to extreme values in the four study catchments, so they reached suboptimal
values when there was a larger number of outliers [101]. However, if the samples are small
and the catchments are heterogeneous, as was the case in this study, it is recommended
to use the NSE criterion [102]. All RMSE values were low for all catchments (< 2.61).
Effectively, this was a useful criterion because it is a good indicator when the simulation is
continuous and long-term [103].

4.2. Peak Flows

Regarding peak flows, they were difficult to simulate with the three hydrological
models. This is consistent with [104], which showed that peak flows are naturally difficult
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to model because of the problems of spatial and temporal representation of the most intense
precipitation. This is complemented by [105], which showed that the simulation step is
another factor that limits the simulation of peak flow events, since not all the catchment
area has a homogeneous concentration time [104,106]. Although some attempts have been
made to model peak flow, such as [107] that showed good performance on peak flows in
east China, the modified model is not able to simulate daily flows. Therefore, our results
were expected since this hydrological model family was not specifically designed to model
peak flows.

In addition, the RMSE criterion does not seem to be sufficient to describe the ability
of the model to simulate peak flows. The streamflow underestimation observed in Q2 is
larger than BLQ1 and BLQ2. However, in these last ones, a significantly higher RMSE
was obtained due to their higher observed and simulated discharge values. Although our
results suggested that the GR6J model achieves better results in simulating maximum flows,
these results are contrary to those obtained by [108], where the GR4J model achieves greater
peak flow efficiency. More studies are needed to identify the advantages and disadvantages
of the GRJ models to simulate peak flows in small catchments.

4.3. Summer Flows

In the lower precipitation period, the Q3 catchment reached a low flow with 0.000013 mm
for two months in both the calibration and validation periods, where none of the models
were able to simulate them in both periods. However, due to the NSElog criteria and
exceedance probability analysis, the GR6J model was the most efficient to simulate low
discharge in all study basins.

Our results matched with those obtained by [24,109,110], where the GR6J model
achieved a better simulation of minimum flows than the GR4J model, especially in catch-
ments where groundwater contributes significantly to flow. This difference is attributed
to the fact that the GR6J model considers a second exponential routing store, the one that
is in parallel to the existing routing store in the GR4J and GR5J models associated with
an additional parameter (X6) in the GR6J model. This gave a more accurate simulation
of low flows in summer in most of the studied scenarios and does not decrease efficiency
in the simulation of maximum flows [24,74]. One possible explanation is that the GR6J
exponential routing store is capable of dealing with positive and negative values, so it
has the capability to represent water levels even though no water reaches this storage
(no precipitation or drainage), and it can therefore simulate the recession stage more
efficiently [111].

It should be noted that an uninterrupted series of dry years (2010–2019) has prevailed
in central Chile (western South America, 30–38◦ S), with annual precipitation deficits
varying between 25 and 45% [5], during the timespan considered in this study (2010–2016).
Therefore, one possible reason for our results is the consequence of the effects of climate
change [5]. Low flows in extreme MD and in semi-arid conditions (Q2 and Q3) with mean
annual precipitation below 950 mm could be extremely vulnerable to this phenomenon.

It is important to note that, as also pointed out by [51], the variability of the parameters
of the same catchment between models, specifically X2 and X5 in Q2 and BLQ1, is given
by using different evapotranspiration methods. Additionally, the parameters x1, X2 and
X3 are more sensitive than the parameter x4 to the precipitation input data, while X3 is
more sensitive to the size of the catchment and the length of the water network [112]. For
instance, X1 in BLQ1 changes from 979 to 671 when passing from GR4J to GR5J, while it
drops to 323 in GR6J. This means that hydrological processes represented by parameters
are re-arranged by the model. Thus, as the variability of the parameter X1 among the
catchments may be related to the variations in the input values of precipitation and not
to PET, further analyses are required to accurately identify the sources of variability for
parameter X1.

In the same way, the sensitivity analysis showed that according to the RMSE criterion,
parameters X2 and X3 in the GR4J model (similar results to those obtained by [113]) and
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X2 and X5 in the GR5J and GR6J models are the most sensitive parameters, explaining its
greater variability when using different evapotranspiration input data for the same catch-
ment. So, when a more efficient discharge simulation is needed, they must be calibrated
before any other parameters.

From the KGE, KGE’, NSE, RMSE, IOA, MAE, MAPE, SI and BIAS values obtained
for the four catchments and their results, it is possible to infer that the random or system-
atic errors in the input data, such as precipitation, temperature and evapotranspiration,
adequately represent the input conditions in time and space throughout the catchment [11].

The robustness of the KGE and KGE’ criteria depend on the climatic variability within
each of the catchments, rather than on the objective function that may not be sensitive to
the models [114]. This could also be explained by the similar behavior observed in the
quality of the simulation between Q2 and Q3 and between BLQ1 and BLQ2 catchments.
Here, BLQ2 had a higher quality in the simulation of discharge according to the KGE and
KGE’ criteria.

Simulations performed by GR4J, GR5J and GR6J hydrological models were shown
to be efficient in reaching the representativeness of the streamflow regime in the study
catchments during the calibration and validation periods. In turn, it was observed that the
RMSE criteria reached their most efficient values for the Q3 and BLQ1 calibration periods
and the Q3, BLQ1 and BLQ2 validation periods when using GR6J.

5. Conclusions

The use of hydrological models has become a valuable tool to analyze water resource
management and to better understand the role of the components of the hydrological cycle.
Our results highlighted the necessity of selecting the right model to achieve the best results,
and to allocate calibration efforts and resources to parameter estimation to improve flow
simulation efficiency. For instance, for low flows, a more complex model, such as GR6J,
will perform better than a simpler one, such as GR4J.

One of our main results is that conceptual rainfall–runoff models such as GR4J, GR5J
and GR6J can be utilized under low data availability areas, but also that no single PET/AET
model will work in different climate and catchment land covers. Both potential and actual
evapotranspiration models could provide dissimilar results when feeding hydrological
models. The use of Oudin, Hargreaves–Samani and Actual Priestley–Taylor models im-
proved the simulation’s performance over the Potential Priestley–Taylor model, which
showed no improvement in the efficiency of the hydrological models in any of the study
catchments. However, it seems that the Oudin potential evapotranspiration model is
better to drive these conceptual models. These results highlight that for modeling small
catchments, the use of a temperature-driven PET/AET model is sufficient.

The analyses presented here are limited to this set of data and catchments. As con-
ceptual models are a simplistic representation of several hydrological processes, some
processes can be muted or unrepresented. Limitations in physical processes such as soil
infiltration and canopy interception can increase streamflow modeling bias. Rainfall and
topography are both highly variable, so the exploration of other conceptual lumped models
or semi-distributed ones (with low climate input variable requirements) in a wide range of
catchments and climates is still necessary.

The higher sensitivity of parameters X5 and X6 indicates the importance of below-
ground processes such as infiltration, vadose zone storage and groundwater recharge.
Additionally, lower ET amounts yield better model performance, which links to plant-
related hydrological processes such as root depth, canopy density and orientation. Our
results highlight the importance of a better representation of the water movement in the
soil–plant–atmosphere continuum. We also note that current soil–water information for
the sites does not suffice to improve model efficiency. Detailed simulations of small-scale
catchments (less than 1 km2) would also require parameterizing the within-catchment
variability of soil–water relationships. Even though variability could be small, it could lead
to differences in outputs or switching the prevalence of different hydrological processes.
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Another limitation lies in the difficulty of giving physical meaning to lumped parameters.
Differences in the performance of GRxJ models among catchments also highlight the
importance of the hydrological setting.

The within-catchment variability of soil water content could play a key role in actual
ET values. The lasting dry condition in central Chile since 2010 could have shifted the ET
from forested cover from an energy-limited process to a water-limited one. This issue is
also a limitation that requires further analysis.

Our next steps are to further investigate the complexity of other lumped and semi-
distributed models and their relationship with the mega-drought. It is also necessary to
analyze the impacts of afforestation on water availability due to climate change, and the
impact of vegetation cover on the quality of the simulation. Finally, future work on small
catchments will include hybrid modeling (lumped hydrological modeling and machine
learning) [115] and the use of machine learning techniques [110] to evaluate their efficiency
performance in the simulation of maximum and minimum flows.
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