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1. Introduction

The idea of fractional calculus is as old as traditional calculus (see [1]). Until recently, research on
fractional calculus was confined to the field of pure mathematics but, in the last two decades, many
applications of fractional calculus appeared in several fields of engineering, applied sciences, physics,
economy, etc.

For a complementary study on the recent developments in the field of fractional calculus as well as
its applications see [2–7].

It is important to note that the global fractional derivatives (e.g., Caputo and Riemann-Liouville)
are not collecting mere local information. By contrast, fractional operators keep track of the history
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of the process being studied; this feature allows modeling the non-local and distributed responses that
commonly appear in natural and physical phenomena. On the other side, one has to recognize that
these fractional derivatives Dα show some drawbacks.

This paper relies on the introduction and use of new differential operators, depending on a general
kernel function, which include at once several fractional derivatives earlier introduced and studied in
many different sources.

As we know, by manipulating simple algebraic identities, we can follow the idea of fractional
differential operators of Riemann-Liouville or Caputo type [8–10]. In this paper we will use a general
kernel T in order to define general integral and differential operators of Riemann-Liouville type:

RLDα f (t) =
d
dt

{
J1−α

T,a ( f )(t)
}
, (1.1)

We state the main properties of these integral operators. Furthermore, we study Ostrowski, Székely-
Clark-Entringer and Hermite-Hadamard-Fejér inequalities involving these general fractional operators.

2. Preliminaries

One of the first operators that can be called fractional is the Riemann-Liouville fractional derivative
of order α ∈ C, with Re(α) > 0, defined as follows (see [11]).

Definition 1. Let a < b and f ∈ L1((a, b);R). The right and left side Riemann-Liouville fractional
integrals of order α, with Re(α) > 0, are defined, respectively, by

RLJαa+ f (t) =
1

Γ(α)

∫ t

a
(t − s)α−1 f (s) ds, (2.1)

and
RLJαb− f (t) =

1
Γ(α)

∫ b

t
(s − t)α−1 f (s) ds, (2.2)

with t ∈ (a, b).

When α ∈ (0, 1), their corresponding Riemann-Liouville fractional derivatives are given by(RLDα
a+ f

)
(t) =

d
dt

(
RLJ1−α

a+ f (t)
)

=
1

Γ(1 − α)
d
dt

∫ t

a

f (s)
(t − s)α

ds,

(RLDα
b− f

)
(t) = −

d
dt

(
RLJ1−α

b− f (t)
)

= −
1

Γ(1 − α)
d
dt

∫ b

t

f (s)
(s − t)α

ds.

Other definitions of fractional operators are the following ones.

Definition 2. Let a < b and f ∈ L1((a, b);R). The right and left side Hadamard fractional integrals of
order α, with Re(α) > 0, are defined, respectively, by

Hα
a+ f (t) =

1
Γ(α)

∫ t

a

(
log

t
s

)α−1 f (s)
s

ds, (2.3)

and

Hα
b− f (t) =

1
Γ(α)

∫ b

t

(
log

s
t

)α−1 f (s)
s

ds, (2.4)

with t ∈ (a, b).
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When α ∈ (0, 1), Hadamard fractional derivatives are given by the following expressions:(HDα
a+ f

)
(t) = t

d
dt

(
H1−α

a+ f (t)
)

=
1

Γ(1 − α)
t

d
dt

∫ t

a

(
log

t
s

)−α f (s)
s

ds,

(HDα
b− f

)
(t) = −t

d
dt

(
H1−α

b− f (t)
)

=
−1

Γ(1 − α)
t

d
dt

∫ b

t

(
log

s
t

)−α f (s)
s

ds,

with t ∈ (a, b).

In [12], the author introduced new fractional integral operators, called the Katugampola fractional
integrals, in the following way.

Definition 3. Let 0 < a < b, f : [a, b]→ R an integrable function, and α ∈ (0, 1), ρ > 0 two fixed real
numbers. The right and left side Katugampola fractional integrals of order α are defined, respectively,
by

Kα,ρ
a+ f (t) =

ρ1−α

Γ(α)

∫ t

a

sρ−1

(tρ − sρ)1−α f (s) ds, (2.5)

and

Kα,ρ
b− f (t) =

ρ1−α

Γ(α)

∫ b

t

tρ−1

(sρ − tρ)1−α f (s) ds, (2.6)

with t ∈ (a, b).

Some generalizations of the Riemann-Liouville and Hadamard fractional derivatives appeared
in [13]. These generalizations, called Katugampola fractional derivatives, are defined as

(KDα,ρ
a+ f )(t) =

ρα

Γ(1 − α)
t1−ρ d

dt

∫ t

a

sρ−1

(tρ − sρ)α
f (s) ds,

(KDα,ρ
b− f )(t) =

−ρα

Γ(1 − α)
t1−ρ d

dt

∫ b

t

sρ−1

(sρ − tρ)α
f (s) ds,

with t ∈ (a, b).

The relations between these two fractional operators are the following:

(KDα,ρ
a+ f )(t) = t1−ρ d

dt
K1−α,ρ

a+ f (t),

(KDα,ρ
b− f )(t) = −t1−ρ d

dt
K1−α,ρ

b− f (t).

Definition 4. Let 0 < a < b, g : [a, b] → R an increasing positive function on (a, b] with continuous
derivative on (a, b), f : [a, b]→ R an integrable function, and α ∈ (0, 1) a fixed real number. The right
and left side Kilbas-Marichev-Samko fractional integrals of order α of f with respect to g are defined,
respectively (see [14]), by

Iαg,a+ f (t) =
1

Γ(α)

∫ t

a

g′(s) f (s)(
g(t) − g(s)

)1−α ds, (2.7)

and

Iαg,b− f (t) =
1

Γ(α)

∫ b

t

g′(s) f (s)(
g(s) − g(t)

)1−α ds, (2.8)

with t ∈ (a, b).
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There are other definitions of integral operators in the global case, but they are slight modifications
of the previous ones, some include non-singular kernel and others incorporate different terms.

3. General fractional integral of Riemann-Liouville type

Now, we give the definition of a general fractional integral.

Definition 5. Let a < b and α ∈ R+. Let g : [a, b]→ R be a positive function on (a, b] with continuous
positive derivative on (a, b), and G : [0, g(b) − g(a)] × (0,∞) → R a continuous function which is
positive on (0, g(b) − g(a)] × (0,∞). Let us define the function T : [a, b] × [a, b] × (0,∞)→ R by

T (t, s, α) =
G
(
|g(t) − g(s)|, α

)
g′(s)

.

The right and left integral operators, denoted respectively by JαT,a+ and JαT,b− , are defined for each
measurable function f on [a, b] as

JαT,a+ f (t) =

∫ t

a

f (s)
T (t, s, α)

ds, (3.1)

JαT,b− f (t) =

∫ b

t

f (s)
T (t, s, α)

ds, (3.2)

with t ∈ [a, b].
We say that f ∈ L1

T [a, b] if JαT,a+ | f |(t), JαT,b− | f |(t) < ∞ for every t ∈ [a, b].

Note that these operators generalize the integral operators in Definitions 1–4:

(A) If we choose

g(t) = t,

G(x, α) = Γ(α) x1−α,

T (t, s, α) = Γ(α) |t − s|1−α,

then JαT,a+ and JαT,b− are the right and left Riemann-Liouville fractional integrals RLJαa+ and RLJαb− in (2.1)
and (2.2), respectively. Its corresponding right and left Riemann-Liouville fractional derivatives are

(RLDα
a+ f

)
(t) =

d
dt

(
RLJ1−α

a+ f (t)
)
,(RLDα

b− f
)
(t) = −

d
dt

(
RLJ1−α

b− f (t)
)
.

(B) If we choose

g(t) = log t,

G(x, α) = Γ(α) x1−α,

T (t, s, α) = Γ(α) t
∣∣∣∣ log

t
s

∣∣∣∣1−α,
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then JαT,a+ and JαT,b− are the right and left Hadamard fractional integrals Hα
a+ and Hα

b− in (2.3) and (2.4),
respectively. Its corresponding right and left Hadamard fractional derivatives are

(HDα
a+ f

)
(t) = t

d
dt

(
H1−α

a+ f (t)
)
,(HDα

b− f
)
(t) = −t

d
dt

(
H1−α

b− f (t)
)
.

(C) If we choose

g(t) = tρ,

G(x, α) = Γ(α) ρα x1−α,

T (t, s, α) =
Γ(α)
ρ1−α

| tρ − sρ|1−α

sρ−1 ,

then JαT,a+ and JαT,b− are the right and left Katugampola fractional integrals Kα,ρ
a+ and Kα,ρ

b− in (2.5)
and (2.6), respectively. Its corresponding right and left Katugampola fractional derivatives are

(KDα,ρ
a+ f )(t) = t1−ρ d

dt
(
K1−α,ρ

a+ f (t)
)
,

(KDα,ρ
b− f )(t) = −t1−ρ d

dt
(
K1−α,ρ

b− f (t)
)
.

(D) If we choose a function g with the properties in Definition 5 and

G(x, α) = Γ(α) x1−α,

T (t, s, α) = Γ(α)
| g(t) − g(s)|1−α

g′(s)
,

then JαT,a+ and JαT,b− are the right and left Kilbas-Marichev-Samko fractional integrals Iαg,a+ and Iαg,b−
in (2.7) and (2.8), respectively.

Definition 6. Let a < b and α ∈ R+. Let g : [a, b]→ R be a positive function on (a, b] with continuous
positive derivative on (a, b), and G : [0, g(b) − g(a)] × (0,∞) → R a continuous function which is
positive on (0, g(b) − g(a)] × (0,∞). For each function f ∈ L1

T [a, b], its right and left generalized
derivative of order α are defined, respectively, by

Dα
T,a+ f (t) =

1
g′(t)

d
dt

(
J1−α

T,a+ f (t)
)
,

Dα
T,b− f (t) =

−1
g′(t)

d
dt

(
J1−α

T,b− f (t)
)
.

(3.3)

for each t ∈ (a, b).

Note that if we choose

g(t) = t,
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G(x, α) = Γ(α) x1−α,

T (t, s, α) = Γ(α) |t − s|1−α,

then

Dα
T,a+ f (t) = RLDα

a+ f (t)

and

Dα
T,b− f (t) = RLDα

b− f (t).

Also, we can obtain Hadamard and Katugampola fractional derivatives as particular cases of this
generalized derivative.

3.1. Properties of the integral operators

The following result collects some elementary properties of JαT,a+ and JαT,b− .

Proposition 7. Let a < b and α ∈ R+. Let g : [a, b] → R be a positive function on (a, b] with
continuous positive derivative on (a, b), and G : [0, g(b) − g(a)] × (0,∞) → R a continuous function
which is positive on (0, g(b) − g(a)] × (0,∞). Then the right and left integral operators JαT,a+ and JαT,b−
have the following properties:

(1) For every functions f1, f2 ∈ L1
T [a, b], c1, c2 ∈ R and t ∈ [a, b], we have

JαT,a+(c1 f1 + c2 f2)(t) = c1JαT,a+ f1(t) + c2JαT,a+ f2(t),
JαT,b−(c1 f1 + c2 f2)(t) = c1JαT,b− f1(t) + c2JαT,b− f2(t).

(2) For every functions f1, f2 ∈ L1
T [a, b] with f1 ≤ f2 and t ∈ [a, b], we have

JαT,a+ f1(t) ≤ JαT,a+ f2(t),
JαT,b− f1(t) ≤ JαT,b− f2(t).

(3) For every function f ∈ L1
T [a, b] and t ∈ [a, b], we have∣∣∣JαT,a+ f (t)

∣∣∣ ≤ JαT,a+ | f |(t),∣∣∣JαT,b− f (t)
∣∣∣ ≤ JαT,b− | f |(t).

(4) For every function f ∈ L1
T [a, b] and t ∈ [a, b], we have

JαT,a+ f (t) + JαT,b− f (t) =

∫ b

a

f (s)
T (t, s, α)

ds.

Theorem 8. Let a < b and α ∈ R+. Let g : [a, b] → R be a positive function on (a, b] with continuous
positive derivative on (a, b), and G : [0, g(b) − g(a)] × (0,∞) → R a continuous function which is
positive on (0, g(b) − g(a)] × (0,∞).

(1) If for some 1 < p ≤ ∞ and M > 0, we have∫ b

a

1
T (t, s, α)p/(p−1) ds ≤ M
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for every t ∈ [a, b], then Lp[a, b] ⊆ L1
T [a, b] (we take p/(p − 1) = 1 if p = ∞). Furthermore, JαT,a+ and

JαT,b− are linear bounded operators from Lp[a, b] to L∞[a, b] with norm at most M(p−1)/p.
(2) If T (t, s, α) ≥ c > 0 for every t, s ∈ [a, b], then L1[a, b] ⊆ L1

T [a, b]. Furthermore, JαT,a+ and JαT,b−
are linear bounded operators from L1[a, b] to L∞[a, b] with norm at most 1/c.

Proof. By using Hölder inequality, since T (t, s, α) ≥ 0, we have for each t ∈ [a, b]

∣∣∣JαT,a+ f (t)
∣∣∣ ≤ JαT,a+ | f |(t) =

∫ t

a

∣∣∣ f (s)
∣∣∣

T (t, s, α)
ds ≤

∫ b

a

∣∣∣ f (s)
∣∣∣

T (t, s, α)
ds

≤
( ∫ b

a

∣∣∣ f (s)
∣∣∣pds

)1/p( ∫ b

a

1
T (t, s, α)p/(p−1) ds

)(p−1)/p
,∥∥∥JαT,a+ f

∥∥∥
∞
≤ M(p−1)/p‖ f ‖p,∣∣∣JαT,b− f (t)

∣∣∣ ≤ JαT,b− | f |(t) =

∫ b

t

∣∣∣ f (s)
∣∣∣

T (t, s, α)
ds ≤

∫ b

a

∣∣∣ f (s)
∣∣∣

T (t, s, α)
ds

≤
( ∫ b

a

∣∣∣ f (s)
∣∣∣pds

)1/p( ∫ b

a

1
T (t, s, α)p/(p−1) ds

)(p−1)/p

∥∥∥JαT,b− f
∥∥∥
∞
≤ M(p−1)/p‖ f ‖p.

Hence, JαT,a+ | f |(t), JαT,b− | f |(t) < ∞ for every t ∈ [a, b], and so, Lp[a, b] ⊆ L1
T [a, b]. Furthermore, JαT,a+

and JαT,b− are linear bounded operators from Lp[a, b] to L∞[a, b] with norm at most M(p−1)/p.
Assume now that p = 1 and T (t, s, α) ≥ c > 0 for every t, s ∈ [a, b]. We have for each t ∈ [a, b]

∣∣∣JαT,a+ f (t)
∣∣∣ ≤ JαT,a+ | f |(t) =

∫ t

a

∣∣∣ f (s)
∣∣∣

T (t, s, α)
ds ≤

1
c

∫ b

a

∣∣∣ f (s)
∣∣∣ds,∥∥∥JαT,a+ f

∥∥∥
∞
≤

1
c
‖ f ‖1,∣∣∣JαT,b− f (t)

∣∣∣ ≤ JαT,b− | f |(t) =

∫ b

t

∣∣∣ f (s)
∣∣∣

T (t, s, α)
ds ≤

1
c

∫ b

a

∣∣∣ f (s)
∣∣∣ds,∥∥∥JαT,b− f

∥∥∥
∞
≤

1
c
‖ f ‖1.

Hence, JαT,a+ | f |(t), JαT,b− | f |(t) < ∞ for every t ∈ [a, b], and so, L1[a, b] ⊆ L1
T [a, b]. Furthermore, JαT,a+

and JαT,b− are linear bounded operators from L1[a, b] to L∞[a, b] with norm at most 1/c. �

Theorem 9. Let a < b, α ∈ R+. Let g : [a, b] → R be a positive function on (a, b] with continuous
positive derivative on (a, b), and G : [0, g(b) − g(a)] × (0,∞) → R a continuous function which is
positive on (0, g(b) − g(a)] × (0,∞).

(1) If there exist constants 1 ≤ p < ∞ and M1 such that∫ b

s

1
T (t, s, α)p dt ≤ M1

for every s ∈ [a, b], then JαT,a+ is a linear bounded operator from L1[a, b] to Lp[a, b] with norm at most
M1/p

1 .
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(2) If there exist constants 1 ≤ p < ∞ and M2 such that∫ s

a

1
T (t, s, α)p dt ≤ M2

for every s ∈ [a, b], then JαT,b− is a linear bounded operator from L1[a, b] to Lp[a, b] with norm at most
M1/p

2 .

Proof. By using Minkowski’s integral inequality, since T (t, s, α) ≥ 0 and I[a,t](s) = I[s,b](t) for every
t, s ∈ [a, b] ∥∥∥JαT,a+ f

∥∥∥
p

=
( ∫ b

a

∣∣∣∣ ∫ b

a

f (s)I[a,t](s)
T (t, s, α)

ds
∣∣∣∣pdt

)1/p

≤

∫ b

a

( ∫ b

a

| f (s)|pI[s,b](t)
T (t, s, α)p dt

)1/p
ds

≤

∫ b

a

( ∫ b

s

1
T (t, s, α)p dt

)1/p
| f (s)| ds

≤ M1/p
1 ‖ f ‖1.

In a similar way, since I[t,b](s) = I[a,s](t) for every t, s ∈ [a, b],

∥∥∥JαT,b− f
∥∥∥

p
=

( ∫ b

a

∣∣∣∣ ∫ b

a

f (s)I[t,b](s)
T (t, s, α)

ds
∣∣∣∣pdt

)1/p

≤

∫ b

a

( ∫ b

a

| f (s)|pI[a,s](t)
T (t, s, α)p dt

)1/p
ds

≤

∫ b

a

( ∫ s

a

1
T (t, s, α)p dt

)1/p
| f (s)| ds

≤ M1/p
2 ‖ f ‖1.

�

Proposition 10. Let a < b and α ∈ R+. Let g : [a, b] → R be a positive function on (a, b] with
continuous positive derivative on (a, b), and G : [0, g(b) − g(a)] × (0,∞) → R a continuous function
which is positive on (0, g(b) − g(a)] × (0,∞).

(1) If ∫ b

a

∫ t

a

1
T (t, s, α)2 ds dt < ∞,

then JαT,a+ is a Hilbert-Schmidt integral operator on L2[a, b], and so, a continuous and compact
operator.

(2) If ∫ b

a

∫ b

t

1
T (t, s, α)2 ds dt < ∞,

then JαT,b− is a Hilbert-Schmidt integral operator on L2[a, b], and so, a continuous and compact
operator.
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Proof. Denote by IB the characteristic function of the set B (i.e., the function such that IB(t) = 1 if t ∈ B
and IB(t) = 0 if t < B). Then

JαT,a+ f (t) =

∫ t

a

f (s)
T (t, s, α)

ds =

∫ b

a
A(t, s) f (s) ds,

where
A(t, s) =

I[a,t](s)
T (t, s, α)

.

We have ∫ b

a

∫ b

a
A(t, s)2 ds dt =

∫ b

a

∫ t

a

1
T (t, s, α)2 ds dt < ∞.

Therefore, JαT,a+ is a Hilbert-Schmidt integral operator on L2[a, b], thus, it is a linear compact operator.
This finishes the proof of the first item. The proof of the second one is similar. �

3.2. On the Ostrowski inequality in the generalized framework

The utility of inequalities, particularly integral inequalities involving convex functions, is widely
recognized as one of the main elements supporting the development of several modern branches of
mathematics, and so, it has received considerable attention in recent years.

Ostrowski proved in [15] the following interesting inequality:

Theorem 11. Let f : [a, b]→ R be a differentiable function. If f ′ ∈ L∞[a, b], then∣∣∣∣∣∣ f (x) −
1

b − a

∫ b

a
f (s) ds

∣∣∣∣∣∣ ≤ 1
b − a

[(b − a
2

)2
+

(
x −

a + b
2

)2
] ∥∥∥ f ′

∥∥∥
∞
.

Since then, there are a lot of generalizations and applications of this inequality (see, e.g., [16]). In
particular, Dragomir and Wang generalized this inequality to Lp[a, b] (p > 1) in [17] as follows:

Theorem 12. Let f : [a, b]→ R be a differentiable function. If p > 1, 1/p + 1/q = 1 and f ′ ∈ Lp[a, b],
then ∣∣∣∣∣∣ f (x) −

1
b − a

∫ b

a
f (s) ds

∣∣∣∣∣∣ ≤
[
(x − a)q+1 + (b − x)q+1

(q + 1)(b − a)q

]1/q ∥∥∥ f ′
∥∥∥

p
.

In this paper we prove a version of this inequality involving our kernel 1/T . The main improvement
is to consider this general weight, but also, we prove the inequality for a larger class of functions, and
we include the case p = 1.

Theorem 13. Let f : [a, b]→ R be an absolutely continuous function, and u : [a, b]→ [0,∞) given by

ut0,α(s) =
1

T (t0, s, α)

for each fixed t0 ∈ [a, b] and α > 0. Assume that∫ g(b)−g(a)

0

dx
G(x, α)

< ∞
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for some α > 0. Then ∫ b

a
ut0,α(s) ds < ∞

for every t0 ∈ [a, b]. Also, we have:

(1) If 1 < p ≤ ∞ and 1/p + 1/q = 1, then∣∣∣∣∣∣∣∣ f (x) −
1∫ b

a
ut0,α(s) ds

∫ b

a
f (s) ut0,α(s) ds

∣∣∣∣∣∣∣∣ ≤
(
b − a

2
+

∣∣∣∣∣ x −
a + b

2

∣∣∣∣∣ )1/q ∥∥∥ f ′
∥∥∥

p

for every x, t0 ∈ [a, b].

(2) If p = 1, then ∣∣∣∣∣∣∣∣ f (x) −
1∫ b

a
ut0,α(s) ds

∫ b

a
f (s) ut0,α(s) ds

∣∣∣∣∣∣∣∣ ≤
∥∥∥ f ′

∥∥∥
1

for every x, t0 ∈ [a, b].

Proof. First of all, let us check that ut0,α ∈ L1[a, b]:

∫ b

a
ut0,α(s) ds =

∫ b

a

ds
T (t0, s, α)

=

∫ b

a

g′(s) ds
G
(
|g(t0) − g(s)|, α

)
=

∫ t0

a

g′(s) ds
G
(
g(t0) − g(s), α

) +

∫ b

t0

g′(s) ds
G
(
g(s) − g(t0), α

)
=

∫ g(t0)−g(a)

0

dx
G(x, α)

+

∫ g(b)−g(t0)

0

dx
G(x, α)

≤ 2
∫ g(b)−g(a)

0

dx
G(x, α)

< ∞.

Note that f ut0,α ∈ L1[a, b], since f ∈ L∞[a, b] and ut0,α ∈ L1[a, b]. We can assume that f ′ ∈ Lp[a, b],
since otherwise the inequality trivially holds.

Let us define m and M as the minimum and maximum values of f on [a, b], respectively. Thus,
we have

m ≤
1∫ b

a
ut0,α(s) ds

∫ b

a
f (s) ut0,α(s) ds ≤ M.

The intermediate values theorem gives that there exists x0 ∈ [a, b] with

f (x0) =
1∫ b

a
ut0,α(s) ds

∫ b

a
f (s) ut0,α(s) ds.
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Assume first 1 < p < ∞. Hölder inequality gives∣∣∣∣∣∣∣∣ f (x) −
1∫ b

a
ut0,α(s) ds

∫ b

a
f (s) ut0,α(s) ds

∣∣∣∣∣∣∣∣
= | f (x) − f (x0) | =

∣∣∣∣∣∣
∫ x

x0

f ′(s) ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ x

x0

| f ′(s)|pds

∣∣∣∣∣∣1/p ∣∣∣∣∣∣
∫ x

x0

1q ds

∣∣∣∣∣∣1/q
= |x − x0|

1/q

∣∣∣∣∣∣
∫ x

x0

| f ′(s)|pds

∣∣∣∣∣∣1/p

≤max {x − a, b − x}1/q ‖ f ′‖p .

The desired inequality holds since

max {x − a, b − x} =
b − a

2
+

∣∣∣∣∣ x −
a + b

2

∣∣∣∣∣ .
If p = 1 or p = ∞, then a similar and simpler argument gives the inequalities. �

3.3. On the Székely-Clark-Entringer inequality

The following Székely-Clark-Entringer inequality appears in [18].

Proposition 14. If p ≥ 1 is an integer and 0 ≤ x1, . . . , xn ≤ n − 1, then

( n∑
j=1

xp
j

)1/p
≤ (n − 1)1−1/p

n∑
j=1

x1/p
j .

In this section we are going to prove a Székely-Clark-Entringer-type inequality for generalized
integrals.

Theorem 15. Consider real numbers a < b, α > 0, 0 < r ≤ p and f : [a, b] → R a measurable
function. Then the following inequality for fractional integrals holds:(∫ b

a

| f (s)|p

T
(
b, s, α

) ds
)1/p

≤ ‖ f ‖1−r/p
∞

(∫ b

a

| f (s)|r

T
(
b, s, α

) ds
)1/p

. (3.4)

Proof. We have ∫ b

a

| f (s)|p

T
(
b, s, α

) ds =

∫ b

a

| f (s)|p−r| f (s)|r

T
(
b, s, α

) ds ≤ ‖ f ‖p−r
∞

∫ b

a

| f (s)|r

T
(
b, s, α

) ds,(∫ b

a

| f (s)|p

T
(
b, s, α

) ds
)1/p

≤ ‖ f ‖1−r/p
∞

(∫ b

a

| f (s)|r

T
(
b, s, α

) ds
)1/p

.

�
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The argument in the proof of Theorem 15 allows to obtain a strongly improvement of Proposition 14
(it appears in [19], with a more complicated proof).

Corollary 16. Consider real numbers 0 < r ≤ 1 ≤ p, ∆ > 0 and 0 ≤ x1, . . . , xn ≤ ∆. Then

( n∑
j=1

xp
j

)1/p
≤ ∆1−r

n∑
j=1

xr
j.

Proof. The argument in the proof of Theorem 15 gives

‖ f ‖Lp(µ) ≤ ‖ f ‖
1−r/p
L∞(µ)‖ f ‖

r/p
Lr(µ)

for any measure µ and 0 < r ≤ p. In particular, since ‖(x1, . . . , xn)‖∞ ≤ ∆, we have

n∑
j=1

x j ≤ ∆1−r
n∑

j=1

xr
j.

Thus, the following known inequality

( n∑
j=1

xp
j

)1/p
≤

n∑
j=1

x j

finishes the proof. �

3.4. On the Hermite-Hadamard inequality

The following double inequality

f
(
a + b

2

)
≤

1
b − a

∫ b

a
f (x) dx ≤

f (a) + f (b)
2

(3.5)

holds for any convex function f on [a, b].

This inequality was published by Hermite in 1883 and, independently, by Hadamard in 1893. It
gives an estimation of the mean value of a convex function and note that it also provides a refinement
of Jensen inequality. Probably the most important extension of this inequality is the so called Hermite-
Hadamard-Fejér inequality

f
(
a + b

2

) ∫ b

a
g(x) dx ≤

∫ b

a
f (x)g(x) dx ≤

f (a) + f (b)
2

∫ b

a
g(x) dx

for any convex function f on [a, b] and any non-negative integrable function g which is symmetric with
respect to (a + b)/2.

The motivated reader is referred to [20] and references therein for more information and other
extensions of Hermite-Hadamard inequality.

In [21] the authors proved the following variant of Hermite-Hadamard inequality for Riemann-
Liouville fractional integrals:
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Theorem 17. Let 0 ≤ a < b, α > 0 and f : [a, b] → R a convex positive function. Then the following
inequalities for fractional integrals hold:

f
(
a + b

2

)
≤

α

2(b − a)α

(∫ b

a
(b − t)α−1 f (t) dt +

∫ b

a
(t − a)α−1 f (t) dt

)
≤

f (a) + f (b)
2

.

Also, in [22] appear general inequalities which are a version of Hermite-Hadamard-Fejér inequality
in the context of fractional calculus.

We now present a slight improvement of Hermite-Hadamard-Fejér inequality, that we will apply in
the context of fractional calculus.

Theorem 18. Let a < b, f : [a, b] → R a convex function and µ a finite measure on [a, b] which is
symmetric with respect to (a + b)/2. Then the following inequalities hold:

f
(
a + b

2

)
µ
(
[a, b]

)
≤

∫ b

a
f (s) dµ(s) ≤

f (a) + f (b)
2

µ
(
[a, b]

)
.

Proof. Since f is a convex function, we have for s ∈ [a, b]

f
(
a + b

2

)
= f

(
a + b − s + s

2

)
≤

f (a + b − s) + f (s)
2

.

Hence, we obtain

f
(
a + b

2

)
µ([a, b]) =

∫ b

a
f
(
a + b

2

)
dµ(s) ≤

1
2

∫ b

a
f (a + b − s) dµ(s) +

1
2

∫ b

a
f (s) dµ(s).

Since µ is a symmetric measure with respect to (a + b)/2, we have∫ b

a
f (a + b − s) dµ(s) =

∫ b

a
f (s) dµ(s),

which gives the first inequality.
In order to prove the second one, the convexity of f gives for s ∈ [a, b]

f (s) = f
(

b − s
b − a

a +
s − a
b − a

b
)
≤

b − s
b − a

f (a) +
s − a
b − a

f (b),

f (a + b − s) = f
(

s − a
b − a

a +
b − s
b − a

b
)
≤

s − a
b − a

f (a) +
b − s
b − a

f (b),

f (s) + f (a + b − s) ≤ f (a) + f (b).

Thus,
1
2

∫ b

a
f (s) dµ(s) +

1
2

∫ b

a
f (a + b − s) dµ(s)

≤

∫ b

a

f (a) + f (b)
2

dµ(s)

=
f (a) + f (b)

2
µ([a, b]).
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Since µ is a symmetric measure with respect to (a + b)/2, we have∫ b

a
f (a + b − s) dµ(s) =

∫ b

a
f (s) dµ(s),

which gives the second inequality. �

The argument in the proof of Theorem 18 gives the following result.

Proposition 19. Let a < b, f : [a, b]→ R a convex function and µ a finite measure on [a, b]. Then the
following inequalities hold:

f
(
a + b

2

)
µ
(
[a, b]

)
≤

1
2

(∫ b

a
f (a + b − s) dµ(s) +

∫ b

a
f (s) dµ(s)

)
≤

f (a) + f (b)
2

µ
(
[a, b]

)
.

Proposition 19 has the following consequence in the context of fractional calculus.

Proposition 20. Let a < b, α > 0 and f : [a, b]→ R a convex function. Then the following inequalities
for fractional integrals hold:

f
(
a + b

2

)
≤

1
2T(α)

(∫ b

a

f (a + b − s)
T
(
b, s, α

) ds +

∫ b

a

f (s)
T
(
b, s, α

) ds
)
≤

f (a) + f (b)
2

, (3.6)

with

T(α) =

∫ b

a

1
T (b, s, α)

ds =

∫ g(b)−g(a)

0

dx
G(x, α)

.

4. Conclusions

In this paper, we present a general formulation of the well-known fractional drifts of
Riemann-Liouville type. Our approach includes the Riemann-Liouville, Hadamard, Katugampola,
and Kilbas-Marichev-Samko fractional derivatives. We state the main properties of these integral
operators in Subsection 3.1. In particular, we provide sufficient conditions to ensure that these
operators are bounded and are Hilbert-Schmidt operators. Also, we study Ostrowski inequality
involving these general fractional operators. Finally, we obtain a kind of Székely-Clark-Entringer and
Hermite-Hadamard-Fejér inequalities for these operators.
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18. L. A. Székely, L. H. Clark, R. C. Entringer, An inequality for degree sequences, Discrete Math.,
103 (1992), 293–300. doi: 10.1016/0012-365X(92)90321-6.

19. J. M. Rodrı́guez, J. L. Sánchez, J. M. Sigarreta, CMMSE-on the first general Zagreb index, J. Math.
Chem., 56 (2018), 1849–1864. doi: 10.1007/s10910-017-0816-y.

20. Selected Topics on Hermite-Hadamard Inequalities, RGMIA Monographs, Victoria University,
2000. Available from: https://rgmia.org/papers/monographs/Master.pdf.
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