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Abstract. In this brief proof-of-concept paper, we present an algorithm
developed in Python to automate the analysis of images obtained in
scratch assays. Our algorithm uses random forest, a classic machine learn-
ing technique, to train and segment scratch assay images. This enables
an average time reduction of 84% on the analysis of the images, together
with a procedure with replicable results.
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1 Introduction

Scratch assays, also known as migration assays or wound healing assays, are
experiments conducted to study the migration capacity of collective groups of
cells [2,6]. These types of experiments are widely used in cancer research, as they
enable the understanding of how cells mobilise and occupy space, especially in
processes like metastasis and invasion of healthy tissue [3].

A two-dimensional migration assay usually involves four steps (See Figure
1.c). The first step consists of cultivating tumor cells on a dish until the point
where cells have formed a confluent monolayer. Then a cell-free region is gener-
ated under determined conditions. A common practise is to scratch the surface
of the dish with the tip of a pipette, making a wound by carefully removing cells.
Then, after the scratch is done, the documentation process begins. This process
consists of obtaining photos of the dish at pre-established periods. Finally, the
images are analysed by measuring the cell-free gap, which provides insight into
the cells’ migratory potential [2,6].

There are several methods to analyse the images and acquire quantitative
measures of the change in time of the cell-free region’s area. However, most of
these methods are conducted manually[1]. They involve measuring wound areas
in every image of each experiment by hand, usually by drawing the contour of the
cell-free region[2,6]. As a result, the whole process takes a considerable amount of
time. Besides, the obtained measurements are highly operator dependant; hence,
they are not easily replicable.

This paper was submitted and accepted to the 26th Medical Image Understanding
and Analysis (MIUA) conference’s abstract track in July 2022.
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Fig. 1. a) Algorithm Flow Diagram, a.1) Training process. a.2) Texture Detection
process. b) Image Processing Results b.1) Reference/training Image with user specified
textures (left), Gray scale and entropy filter applied to the reference image (right).
b.2) Segmented Image (left). Dilation and Erosion operators applied on the segmented
image (right). c) Scratch assay diagram, edited from G.Regnard[5]. d) Wound area
measurement.

To address these time-consuming and replicability issues, we implemented a
supervised machine-learning algorithm to train and classify regions of scratch
assay images into two classes (wound vs. cell) and measure the corresponding
wound area. The algorithm was tested on scratch assays using two breast cancer
cell lines (MCF7 and MDA-MB-231).
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2 Methodology

The proposed method consists of using Scikit-learn’s random forest algorithm
[4] to train a model with a reference image chosen by the user. The model is
fed with a features vector for each pixel in the image to classify it into one of
two categories (wounded texture/cell texture). The features vectors are obtained
by applying Gaussian blurring filters and also calculating the eigenvalues of the
hessian matrix after Gaussian blurring. The pixels used to train the image are
obtained by manual user selection. Then, the resulting model is used to segment
the rest of the scratch assay images. Afterwards, dilatation and erosion operators
are applied to reduce the wound regions inside cellular areas. Finally, the algo-
rithm counts the pixels classified per each category and obtains a measurement
of the segmentation. A summary of the main steps of the algorithm is displayed
in Figure 1.a.

Our model was tested on scratch assay images executed in a study looking
for a new immune therapy for breast cancer. Research that used MCF7 and
MDA-MB-231 tumor cell lines, with MDA-MB-231 being the more aggressive
one. Assessing their migratory potential is essential to understanding how tu-
morigenicity is mitigated/minimised when applying immune blockade (see anti-
lactadherin stimuli in Figure 1.d).

3 Results

Our laboratory colleagues spent an average of 150 seconds processing one image,
ranging from 50 to 300 seconds. While our model took an average of 24 seconds,
ranging from 8 to 40 seconds, depending on the computational power of the
machine where the code ran. As a result, processing an image with our model is
approximately six times faster than processing it manually.

After applying the proposed algorithm to 80 images, we successfully seg-
mented 60 images with just one training process. Afterwards, we noticed that
our model segmented 20 images incorrectly. These images were brighter than the
image we used to train the model. In light of this, we trained our model with
one of the 20 images, and then we re-segmented these images, obtaining better
results. From this experience, we can say that the main limitation of our model
is that it is not invariant to changes in luminosity and colour contrasts in the
images, which can be controlled by training the model in each scratch assay. As
more tests are developed, and more images are obtained, a better model that
addresses these problems could be achieved.

4 Conclusion

In this work, we implemented an algorithm to segment scratch assay images
automatically. The proposed algorithm was tested with two cell lines, each one
with five different stimuli and with forty images per cell line, showing promising
results. The proposed model can produce consistent results and measurements
six times faster than an average operator.
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